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Abstract

If two drums make the same sound, do they have the same shape? This
question, in an idealized form, attracted the attention of mathematicians.
It turned out that the answer to the question is no: there are some drums
that sound the same but have different shapes. We call these special drum
shapes isospectral non-congruent domains.

This thesis will exhibit such a pair of isospectral non-congruent plane
domains, and prove that they are isospectral. It will also explain a more
general technique for producing isospectral manifolds, and use it to construct
isospectral surfaces.
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Introduction

In the 1960s, a certain question became well-known among mathematicians:
If we know what sounds a drum makes when it is struck, can we determine
the shape of the drumhead? In short, ”Can one hear the shape of a drum?”

To convert this question into a math problem, we need to construct a
mathematical model of a drum. Our drumhead will be a domain D ∈ R2.
When the drum is struck, its skin will begin to oscillate up and down. We can
represent the height of the drum at each point on its surface by a function
u : D → R. This function will evolve in time according to the wave equation:

∂2u

∂t2
= c2∆u

where ∆u = ∂2u
∂x2

+ ∂2u
∂y2

. Since the drum skin is clamped to the rim at the

edges of the drum, we also must have u(x, y) = 0 for (x, y) on the boundary
of D.

As it vibrates, the drum will produce waves in the air that we hear
as sounds. We will hear a pure tone if the drum oscillates at a single
constant frequency everywhere – if u(x, y, t) can be written as u(x, y, t) =
f(x, y)(cos(γt) + sin(γt)) for some γ ∈ R. This implies

−γ2u = c2∆u

∆u = −
(γ
c

)2
u

Therefore, the pure tones that can be produced by a drum with a given shape
D ∈ R2 are in one-to-one correspondence with the eigenvalues of ∆ on D.
The set of possible eigenvalues of ∆ on D is referred to as the spectrum of
D.

Some properties of the geometry of a plane domain D can be deter-
mined by its spectrum alone. For example, Weyl [19] derived the following
asymptotic formula for the eigenvalues:

λm ∼
4πm

A
,

where A is the area of the domain, and λm is the mth eigenvalue, where the
eigenvalues are arranged in an increasing sequence. This formula implies
that

A = lim
m→∞

4πm

λm

1



So the area of a domain is uniquely determined by its spectrum.
Given that the area can be deduced from the spectrum, as well as other

geometric invariants, it’s natural to wonder if the entire shape is so deter-
mined. This is the mathematical phrasing of ”can one hear the shape of
a drum?”: can one determine a plane domain from its spectrum? Similar
questions can be asked for general manifolds, and higher-dimensional ana-
logues of ∆ and the spectrum. Gel’fand conjectured that the spectrum of a
Riemann surface determines the surface’s metric up to isometry[3]. It turns
out that both of these conjectures are false.

For plane domains, the problem was popularized among mathematicians
by Mark Kac’s 1966 article [12]. For general manifolds, it was proved that
the spectrum does not determine the manifold by Milnor [14], who con-
structed a pair of 16-dimensional tori with the same spectrum that were
not isometric. Several other examples of isospectral manifolds were found,
but a breakthrough occurred when Sunada [18] discovered a general method
for constructing such manifolds by considering the quotient of manifolds
under finite group actions. This method was extended by Gordon, Webb,
and Wolpert[9] to produce the first example of isospectral domains in the
plane. Their proof was simplified by Buser, Conway, Doyle and Semmler [5],
who constructed some particularly simple examples and gave an elementary
proof of isospectrality based on ”transplantation”.

This thesis will present the proof of the existence of isospectral non-
congruent planar domains in a comprehensible fashion. Section 1 explain
some basic properties of the Laplacian operator. Section 2 will present
Conway et al’s ”transplantation” proof. Section 3 will explain Sunada’s
method and exhibit some examples of isospectral surfaces created using this
method. Finally, section 4 will show how Sunada’s method can ultimately
be used to derive the elementary proof by transplantation.

1 The Laplacian and its Properties

In this section, we will define the Laplacian and its spectrum on a plane do-
main. We will define what it means for two planar domains to be isospectral,
and prove some properties of the Laplacian and its eigenvalues.

Definition 1. The Laplacian, or Laplace operator, is an 2nd-order differ-
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ential operator ∆ on twice-differentiable functions on Rn such that

∆f =

n∑
i=1

∂2f

∂x2
i

The Laplacian can be extended to act on Riemannian manifolds using
the equivalent definition ∆f = ∇ · ∇f .

Definition 2. Given some bounded domain D ⊂ Rn, a nonzero function f

is an eigenfunction of the Laplacian on the domain if it satisfies ∆f = −λf

for all x ∈ D. The value λ is referred to as an eigenvalue of the Laplacian

on the domain.

If the manifold has boundary then eigenfunctions are required to satisfy
certain boundary conditions. For domains D ∈ Rn the typical boundary
conditions are:

1. Dirichlet. f(x) = 0 for all x ∈ ∂D, where ∂D is the boundary of D.

2. Neumann. ∇f(x) · n = 0 for all x ∈ ∂D, where n is the normal to the
boundary.

In this report we will focus on the Dirichlet boundary conditions.
The linear combination of eigenfunctions with a given eigenvalue will be

another eigenfunction with the same eigenvalue; they form a vector space.
We say that an eigenvalue λ has geometric multiplicity m if the correspond-
ing vector space of eigenfunctions has dimension m.

It can be shown [8] for domains with piecewise smooth boundary that
the multiplicities of the eigenvalues are finite, that the set of eigenvalues
is infinite, has no limit points, and consists of positive real numbers. The
eigenfunctions also form an orthonormal basis for L2(D). We will present a
proof sketch of this later. Thus, we can arrange the eigenvalues in an infinite
sequence

λ1 < λ2 ≤ λ3 ≤ ...

in which we repeat each value according to its multiplicity (λ1 always has
multiplicity 1). We refer to this sequence as the spectrum of D. We
say that two domains are isospectral if they have the same spectrum. The
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problem we are considering is how to produce domains that are isospectral
but not isometric.

In the remainder of this section, we’ll first present some examples of
domains and their spectra, and then prove some of the properties of the
eigenvalues we claimed above. We’ll also present a method for extend-
ing eigenfunctions to domains beyond their original domain of decompo-
sition: the Reflection Principle. This principle will be needed for the proof
of isospectrality by transplantation.

1.1 Eigenvalues of the Line

As a simple example of a domain for which we can determine the spec-
trum, consider the 1 dimensional line segment [0, 1] ⊂ R. Here, the problem
of finding the Dirichlet eigenvalues is equivalent to solving the differential
equation

d2f

dx2
= −λf

subject to f(0) = 0 and f(1) = 0.

The ordinary differential equation d2f
dx2

= −λf has solutions:

• f(x) = c1e
√
−λx + c2e

−
√
−λx for λ < 0. Given f(0) = 0, we have

c1 = −c2, but this implies that f(b) = c1e
√
−λ − c1e

−
√
−λ will not be

zero, as e
√
−λ 6= e−

√
−λ. Hence there are no Dirichlet eigenvalues for

λ < 0.

• f(x) = ax + d for λ = 0. We have f(0) = d = 0, so f(1) = a = 0,
which implies a = 0. Therefore there are no non-trivial eigenfunctions
with eigenvalue 0.

• f(x) = c1 cos(
√
λx) + c2 sin(

√
λx) for λ > 0. In this case, we have

f(0) = c1 = 0, so f(1) = c2 sin(
√
λ) = 0. Assuming the solution is not

trivial, this implies sin(
√
λ) = 0, so

√
λ = πk for some k ∈ Z. Thus

λ = (πk)2 for some k ∈ Z.

So then, for an interval of length 1, the spectrum of the Laplacian is given
by

{λi = {(πi)2|i = 1, 2, ...}

4



1.2 Eigenvalues of the Disk

A slightly more challenging example is given by the planar disk of radius L,

{(x, y) ∈ R2|x2 + y2 ≤ L2}

This exposition is based on [11]
We can simplify the problem by switching to polar coordinates. Our re-

gion is now {(r, θ)|r ∈ [0, L], θ ∈ [0, 2π)}. In polar coordinates the Laplacian
takes the form

∆f =
∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2

So eigenfunctions will satisfy

∂2f

∂r2
+

1

r

∂f

∂r
+

1

r2

∂2f

∂θ2
= −λf

with f(L, θ) = 0.
If we separate variables and write f(r, θ) = R(r)Θ(θ), the above equation

can be written

(R′′ +
1

r
R′ + λR)Θ +

1

r2
RΘ′′ = 0

r2R′′ + rR′ + λr2R

R
+

Θ′′

Θ
= 0

r2R′′ + rR′ + λr2R

R
= −Θ′′

Θ
Since the left-side of this equation is dependent only on R and the right

side only dependent on Θ, we have Θ′′

Θ = −c. Now, Θ is 2π-periodic, so it

has the form A cos(mθ) +B sin(nθ). Θ′′

Θ = −c everywhere, so Θ′′(0)
Θ(0) = −m2

implies that c = −m2. So our equation for R becomes

r2R′′ + rR′ + (λr2 −m2)R = 0

Substitute q =
√
λr and this becomes

q2R′′ + qR′ + (q2 −m2)R = 0

Solutions to this equation are called Bessel functions, Jm(x). We have
R(r) = Jm(

√
λr). Using our boundary conditions, we have R(L) = 0.

So Jm(
√
λL) = 0. The functions Jm(x) have a discrete collection of zeros;

let zmn denote the nth zero of Jm, and let Nm be the number of zeros of
Jm. Then the allowable values of lambda are

{λmn =
(zmn
L

)2
|m ∈ N, 1 ≤ n ≤ Nm}
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1.3 Properties of Eigenvalues

We claimed above several properties of the eigenvalues of the Laplacian.
Here, we will sketch a proof of these properties.

First, positivity. This proof of positivity is found in [13]. When we say
the eigenvalues are positive, we mean that for all non-trivial solutions of
λf = −∆f we have λ > 0.

Consider the integral

λ

∫
D
f2d~x = −

∫
D

(∆f)fd~x

= −
(∫

∂D
(∇f · ~n)f −

∫
D
|∇f |2

)

=

∫
D
|∇f |2d~x

where we write dx1dx2...dx2 = d~x, and ~n is the normal vector to the bound-
ary of D.

So in total we have

λ

∫
D
f2d~x =

∫
D
|∇f |2d~x.

Observe that
∫
D |∇f |

2d~x cannot be zero because this would mean ∂f
∂xi

is zero
everywhere for all i. Since f is zero on the boundary, this would mean f
is identically zero. However, by definition f(x) = 0 is not an eigenfunction.
Since f2 and |∇f |2 are positive, this implies that λ is positive.

We also wish to prove that each eigenspace is finite dimensional, that
there are infinitely many eigenvalues, and that the set of eigenvalues has no
limit points. The proof is rather technical, but we can give an outline.

We can extend the Laplacian to the space of L2-integrable functions on
our domain, L2(D) . This space can be endowed with an inner product,
〈f, g〉 =

∫
D fg. This makes it a Hilbert Space, which is an inner product

space that is complete in the induced metric [17].
There is a useful theorem for understanding the eigenvalues of operators

acting on some Hilbert space H, called the spectral theorem for compact
self-adjoint operators. This theorem can be applied if the operator T is:

• compact, which means that the closure T (B) of the image of a bounded
subset B ∈ H is compact.
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• self-adjoint, which means that 〈Tx, y〉 = 〈x, Ty〉 for all x, y ∈ H.

given these conditions, we can state the spectral theorem. [15]

Theorem 1. Suppose T is a compact, self-adjoint operator on H. Then

there exists a system of orthonormal eigenvectors ψ1, ψ2, ψ3... with corre-

sponding real eigenvalues λ1, λ2, λ3, ... such that |λ1| ≥ |λ2| ≥ |λ3| ≥ ...,

and

Tx =
∞∑
k=1

λk〈x, ψk〉ψk

If H is separable(has a countable orthonormal basis), the eigenvectors ψi

form such an orthonormal basis for H. If the set (λn) is infinite, then (λn)

approaches zero as n approaches infinity.

Unfortunately, the Laplace operator is not bounded, so we cannot apply
the spectral theorem directly. To apply the spectral theorem, we consider
another operator ∆−1 on the space of L2 functions, the inverse Laplacian,
such that

∆f = g ⇔ f = ∆−1g

It can be shown [8] that this operator ∆−1 exists and is compact, self-
adjoint, and positive. Now consider the eigenvalues γ of ∆−1:

∆−1g = −γg

g = −γ∆g

∆g = −1

γ
g

So we see that the eigenvalues of ∆ are inverse to those of ∆−1. Since
we proved above that the eigenvalues of ∆ are positive, the eigenvalues of
∆−1 must be positive as well. By the spectral theorem, the eigenvalues γn
of ∆−1 can be arranged in a sequence

γ1 > γ2 ≥ γ3 ≥ ...

7



which approaches 0 as n approaches∞. Therefore, the corresponding eigen-
values of the Laplace operator, λn = 1

γn
, can be arranged in a sequence

0 < λ1 < λ2 ≤ λ3 ≤ ...

which approaches infinity as n approaches infinity. This was our claim.

1.4 The Reflection Principle

The reflection principle allows us to extend eigenfunctions of the Laplacian
defined on a subset of Rn to a wider subset of Rn. In particular, if we
have some domain D which is symmetric about a hyperplane P , we can
consider the subdomains D+ and D− lying on either side of P . Then an
eigenfunction of the Laplacian defined on D+ can be extended to one defined
on D [7]. This property will be crucial for the proof of isospectrality by the
transplantation method.

The reflection principle for eigenfunctions can easily be proved using the
reflection principle for harmonic functions, which are functions satisfying
∆g = 0 everywhere. This reflection principle can in turn by proved using
complex-analytic methods[16], but we will present it without proof:

Theorem 2. Reflection Principle for Harmonic Functions Suppose

D is a bounded domain in Rn which is symmetric about a (n− 1)-plane P .

Denote by D+ and D− the subdomains lying on either side of P . Denote by

x∗ the reflection of a point x in the plane P . If we have a harmonic function

f+ defined on D+ such that f+(p) = 0 for p ∈ P , then the function f(x)

defined by

f(x) =


f+(x) x ∈ D+

−f+(x∗) x ∈ D−

is a harmonic function on D.

Using this theorem, we can easily prove the corresponding reflection
principle for eigenfunctions of the Laplacian:

8



Theorem 3. Reflection Principle for Eigenfunctions Suppose D is a

bounded domain in Rn which is symmetric about a (n− 1)-plane P . Denote

by D+ and D− the subdomains lying on either side of P . Denote by x∗

the reflection of a point x in the plane P . If we have a eigenfunction of

the Laplacian f+ with eigenvalue λ defined on D+ such that f+(p) = 0 for

p ∈ P , then the function f(x) defined by

f(x) =


f+(x) x ∈ D+

−f+(x∗) x ∈ D−
is an eigenfunction of the Laplacian defined on D.

Proof. Since the Laplacian is invariant under rotations and reflections, with-

out loss of generality we can let the hyperplane be x1 = 0, and let D+ lie in

x1 > 0. Define a function g+ in D+ × R by g+(x, a) = f+(x)c(a), where

c(a) =


exp(a

√
−λ) λ ≤ 0

cos(a
√
λ) λ ≥ 0

Since f is an eigenfunction of ∆ on D+, we have

∆g+ = ∆f+c(a) + f+
∂2(c)

∂a2
= −λf+c+ λf+c = 0

Therefore, g+ satisfies the Laplace equation ∆g = 0 on D+ ×R. Now, note

that D+ × R is a sub-domain of Rn+1. The set of points such that x1 = 0

is an n-plane in Rn+1, and D+, D− are symmetric about this plane. By the

reflection principle for harmonic functions we can extend g+ to a function g

defined on D × R, namely

9



g(x, a) =


g+(x, a) x ∈ D+ × R

−g+(x∗, a) x ∈ D− × R

0 x ∈ P × R

Evidently, we have g(x, a) = f(x)c(a). Also,

∆g = ∆fc(a) + f
∂2(c)

∂a2
= 0

At a = 0, this simplifies to

∆f + λf = 0

which implies that f is an eigenfunction of the Laplacian with eigenvalue λ

on D.

2 The Method of Transplantation

In [5], a simple method is given for demonstrating that certain domains are
isospectral. Here, we will illustrate this method, using an example from the
cited paper.

Consider two domains obtained by pasting together 7 congruent triangles
along sides of equal length, depicted in figure 1. The triangle is required to
have all angles less than π

2 , so that no copies overlap in the final domain. If
the triangle is scalene(all sides having different length), then the produced
domains will be non-congruent. To see this, note that in each domain, the
central triangle is distinguished by having four triangles around each vertex.
This proves that any mapping between the two domains must send one
central triangle to the other. But if they are scalene, there is only one such
mapping(translation), and the pattern of identifications of the sides shows
that this will not be a congruence between the two domains.

So, we have two non-congruent domains. We wish to prove that they are
isospectral. To do this, we will present a map Φ from the set of functions on

10



Figure 1: Our two isospectral domains

A to the set of functions on B, such that an eigenfunction with eigenvalue λ
on A is sent to another such function on B. We will also exhibit a map from
functions on B to functions on A with the same property. The existence of
these maps show that A and B have the same spectrum.

To explain the mapping, we will number the triangular subdomains of
A by A0, A1,...,A6, and number the triangular subdomains of B by B0, B1,
, ..., B6. Assume we have an eigenfunction f defined on A with eigenvalue
λ. Denote the restriction of f to the subdomain Ai by fi.

Note that for each pair of triangular domains Ai,Bj , there is a unique
isometry τij sending Ai to Bj . We can use this isometry to map the function
fi to a domain Bk in a unique fashion. In particular we can define a function
on Bk by fi ◦ τ−1

ik .
Using these isometries, we build an eigenfunction g on B using the

scheme illustrated in figure 2. In the central triangle B0, we define the
restriction g0 = f1 ◦ τ−1

10 + f2 ◦ τ−1
20 + f4 ◦ τ−1

40 , and similarly for the other
triangles. Since each τ−1

ij is an isometry, it is clear that the resulting func-
tion will locally be an eigenfunction of ∆ with eigenvalue λ. We just have
to check that it remains smooth across the boundaries of triangular subdo-
mains, so we can take second derivatives, and goes to zero at the boundary

11



Figure 2: The mapping Φ from functions on A to functions on B

of B.
To see why the functions will be continuous along the internal bound-

aries, we consider the blue edge boundary of the central triangle ofB. On one
side of the boundary, we have assigned (leaving out τij for clarity) f1+f2+f4,
on the other, f0+f6−f2. Examining these triangles in A, we see that f1 con-
tinues to f6, f2 continues to −f2 by the reflection principle, and f4 continues
to f0. This is shown in figure 3.

There is also continuity across the red edge of the triangle just below the
center. In figure 4 we see that on one side we have f0 + f6− f2, on the other
f1 − f6 − f5. Once again, examining A, we see that, across the red edge, f0

continues to f1, f6 to −f6 (reflection principle), and −f2 to −f5. There is
continuity along this edge as well.

Now let us consider external boundary edges. Look at the highlighted
green edge shown in figure 5 on the right. Along this edge, the function
gi = f6 − f2 + f0. But since f6 goes to zero along the green edge, and
f0 = f2 here, gi will be zero along the boundary, as required. Similarly,
along the blue edge of the bottommost triangle, we have f1−f5−f6. Along
this edge, f1 continues to f6, so f1 and−f6 cancel. f5 goes to zero along the
blue edge. So gi will be zero along this boundary. Considering the green

12



Figure 3: Crossing a blue edge

Figure 4: Crossing a red edge

13



Figure 5: Boundary conditions

edge of the bottom-most triangle, we see that f1, f5 and f6 all go to zero
along the green edge.

Thus we have verified our transplanted function satisfies internal and
external boundary conditions on the bottom ”leg” of our domain. We can
verify all other boundaries by using the permutation

1→ 2→ 4→ 1

3→ 6→ 5→ 3

which, it can easily be seen, cyclically permutes the ”legs” of both domain.
So our proof of satisfying boundary conditions for the bottom ”leg” works
for all others, just with the labels of functions cyclically permuted.

So, we see that this is a well-defined map between the eigenspace of A
with eigenvalue λ and the eigenspace of B with eigenvalue λ. To show that
it is an injection, we must prove that it is non-singular, i.e. that no non-zero
functions are mapped to zero. This can easily be seen: if we have a non-zero
function defined on domain A, there must be at least one point in A at which
this function is not zero. Consider the 7 points in A and the 7 points in B
which are the images of this point under the unique congruences between
the triangular subdomains. Φ induces a linear map between the values of

14



Figure 6: Mapping from functions on B to functions on A

the function at these 7 points in A and the values at these 7 points in B.
This linear map can be represented by the matrix:

0 1 1 0 1 0 0
1 0 0 0 −1 1 0
1 −1 0 1 0 0 0
0 1 0 0 0 −1 −1
1 0 −1 0 0 0 1
0 0 0 −1 1 0 −1
0 0 1 1 0 −1 0


It can easily be checked that this matrix is non-singular. So the trans-

planted function on B will be non-zero at least one point, proving that Φ is
non-singular.

To complete the proof that A and B are isospectral, we must exhibit an
injective mapping Ψ from eigenspaces of B to eigenspaces of A. The pattern
for such a mapping is shown in figure 6. The proof that it is injective is
exactly analogous to the proof that Φ was injective.

The reader may at this point be satisfied that the two domains are
isospectral, but be curious as to how anyone would think of the above map-
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pings. There is a simple way. Having labelled our domains in A 0,1,...6,
begin by placing ”1” (for instance) in the central triangle of B. From there,
we see that 1 continues to -1 across a green edge, 0 across a red edge, and
6 across a blue edge. So we place those numbers in their corresponding
triangles in B. Then, examining the triangle below the centre in B, we have
0. 0 continues across a green edge to 2, so for this green edge boundary in B
to be zero, we must have -2 in this domain. We proceed in this way, adding
transplanted functions across boundaries, until all functions ”close up” and
our mapping is complete.

This doesn’t explain why the functions should ”close up”, or why these
particular domains work. To understand that, we must first understand an
older method for proving isospectrality, Sunada’s Method.

3 Sunada’s Method

The above method of proving isospectrality was not arrived at out of nowhere.
It was based on an older method for proving isospectrality of manifolds. In
this section, we will first prove Sunada’s theorem, which asserts the isospec-
trality of certain quotients of manifolds by the action of subgroups. This
theorem uses the notion of a covering; for an explanation of this concept
see [10]. Next, we will present some examples of groups satisfying the con-
ditions of the theorem. Lastly, we will use Sunada’s theorem to prove the
isospectrality of certain surfaces.

3.1 Sunada’s Theorem

Consider a finite group G and two subgroups H1 and H2. The triple
(G,H1, H2) is said to satisfy the Sunada condition if for each conjugacy
class Gi of G, |Gi ∩H1| = |Gi ∩H2|.

Theorem 4. Let π : M →M0 be a normal finite Riemannian covering with

deck group G. Let M1 and M2 be the coverings corresponding to subgroups

H1 and H2. If (G,H1, H2) satisfy the Sunada condition, then M1 and M2

are isospectral.
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Proof. (after [1]):

Consider the spectrum of M1. First, note that every eigenfunction of M1

can be lifted to one of M . So the spectrum of M1 is a subset of that of M .

To determine the spectrum of M1, it suffices to determine the multiplicity

of each eigenvalue of M in M1.

Each function on M that is invariant under the action of H1 can be

pushed forward to one on M1. In fact, functions on M1 are in one-to-one

correspondence with those on M that are invariant under H1.

We can project any function on M to one that is invariant under H1

with the map P :

Pf =
1

|H1|
∑
h∈H1

Th(f)

where Th is the push-forward of f under the action of h on M . That is Th(f)

is the composition f ◦ h, where we interpret h as a isometry of M .

Since P is a projection, the dimension of each of the eigenspaces of the

Laplacian will be equal to the trace of P . This is

Tr(P ) =
1

|H1|
∑
h∈H1

Tr(Th)

The trace is preserved by conjugation, so

Tr(P ) =
1

|H1|
∑
Gi

|Gi ∩H1|Tr(Tgi),

where the Gi’s range over the conjugacy classes of their members, and each

gi is a member of Gi. This shows that the multiplicity of each eigenvalue
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depends only on the numbers |Gi ∩Hj |, demonstrating Sunada’s Theorem.

3.2 Example of a Sunada Triple

A useful example of a Sunada triple is found in SL(n, q), the group of n by
n matrices with entries in Fq with determinant 1. The following example
was given in [2].

The two subgroups H1, H2 are given by matrices of the form

H1 =


∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

0 ∗ ∗

H2 =


∗ 0 0 0
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗


which are the elements stabilizing the line (t, 0, ..., 0) and the (n − 1)-

plane (0, x2, ..., xn) respectively. H1 and H2 are easily seen to be subgroups.
We will prove that the subgroups H1 and H2 are not conjugate, but do

satisfy the Sunada condition.

Claim 1. H1 and H2 are not conjugate.

Proof. Assume H1 and H2 are conjugate, that is, there is some g ∈ SL(n, q)

such that H2 = gH1g
−1. Denote by e1 the vector (10...0). Consider the

vector ge1. Since e1 is an eigenvector of each element of H1, for each element

h2 ∈ H2 we have

h2ge1 = gh1g
−1ge1 = gh1e1 = ge1

which implies that ge1 is an eigenvector of each element ofH2 with eigenvalue

1. We will prove that this is impossible, by exhibiting for each non-zero

vector v ∈ Fnq an element of H2 which does not leave the vector invariant.
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Consider our non-zero vector v = (v1v2...vn). At least one element vk, with

index i must be non-zero. Choose some arbitrary other index l. Then the

matrix Q defined by

Qkl = 1

Qij = δij

for i, j 6= k, l does not leave v invariant. Hence there cannot be any vectors

which are fixed by all members of H2, contradicting our conclusion above.

Claim 2. H1 and H2 satisfy the Sunada condition.

To prove this, we will study the intersection of an arbitrary conjugacy
class with H1. But first, another lemma:

Lemma 1. Let ω be an element of Fnq . Let V ⊂ Fnq be a subspace of di-

mension d. The number of transformations in SL(n, q) mapping ω to an

element of V is

(qd − 1)(qn − q)(qn − q2)...(qn − qn−1)

Proof. Choose a basis of Fnq with ω as its first element. An element of

SL(n, q) is determined by the images of each element of this basis. There

are qd − 1 choices of non-zero vectors in Fnq to send ω to. From there,

each basis vector can be sent to any vector not in the subspace spanned by

previous images. The number of such vectors will be qn − qk, where qk is
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the number of basis vectors already assigned images. This in total gives us

(qd − 1)
∏
k = 1n−1qn − qk possible transformations, as desired.

Note in particular that this is only dependent on the dimension d of the
subspace.

Lemma 2. Given an element g ∈ SL(n, q), the number of conjugates of g

that are in H1 depends only on i) the number of eigenspaces of g and their

dimensionality, and ii) the size of the centralizer of g.

Proof. Let W = {h1 ∈ H1|h1 = fhf−1 for some f ∈ SL(n, q)} A conju-

gate fgf−1 of g will intersect H1 if and only if e1 is an eigenvector of this

conjugate – which implies that f−1e1 is an eigenvector of g. Equivalently,

we can say that f−1 maps e1 to one of the eigenspaces of g. Assume g has

k eigenspaces V1, ..., Vk with eigenvalues λ1, ..., λk. Denote by Ωi the set of

elements f of SL(n, q) such that f−1e1 ∈ vi for some i, and denote by Wi

the set of conjugates of g that have e1 as an eigenvector with eigenvalue λi.

Note W = ∪Wi. Note also that by the above lemma |Ωi| is only dependent

on the dimension of Vi Each conjugate of g can be written fgf−1 for some

element f of a unique Ωi. (Unique because each eigenspace Vi has associ-

ated with it an eigenvalue λi, and so fgf−1e1 = λie1.) Two elements q, j of

Ωi produce the same element of H1 when conjugating g if qgq−1 = jgj−1.

Equivalently, j−1qgq−1j = g – or, j−1q commutes with g. Consider the

centralizer, C(g) of g, the subgroup of elements of SL(n, q) that commute

20



with g. This subgroup has a well-defined action on Ωi defined by

C(g)× Ωi → Ωi

h× f 7→ fh−1

To see that this is well-defined, recall that Ωi was defined as the set of

elements such f that f−1e1 ∈ Vk for some k Now, (fh−1)−1 = hf−1

hf−1e1 = hVk

Since h commutes with g, it must leave the eigenspaces of g fixed by the

simultaneous diagonalization theorem. Therefore, fh−1 ∈ Ωi. The action

is also free because it is a group action. It is clear that two elements of Ωi

will map to the same element of H1 if and only if they are in the same orbit

under the action of C(g). So the map from the quotient

Ωi/C(g)→ Vi

is injective. Therefore,

|W | =
∑ |Ωi|
|C(g)|

which is only dependent on the number/dimensionality of eigenspaces of g

and the size of its centralizer.

We have established that the number of conjugates of g that are in
H1 depends only on the number of eigenvectors of g. Now, consider the
automorphism A of SL(n, q) defined by

Ag =
(
gT
)−1
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This automorphism sends H1 to H2. So the number of times that the con-
jugates of g intersect H2 is equal to the number of times that the conjugates
of (gT )−1 intersect H1. But since taking the inverse and transpose leave the
number of eigenvectors invariant, along with the number of elements in the
centralizer, this is in turn equal to the number of times that g intersects H1.
So H1 and H2 satisfy the Sunada condition.

3.3 Constructing Surfaces via Relative Cayley Graphs

So we’ve obtained some subgroups satisfying Sunada’s condition. To actu-
ally construct isospectral manifolds, we need to find a manifold on which G
acts. There is a generic method, first used by Buser in [4], to construct a
surface on which G acts. It involves the Cayley graphs of the groups.

First, some definitions. Given a group G, and a set of generators {gi} of
the group, we can construct a (left) Cayley graph of the group. The graph’s
vertices correspond to elements of the group G, and edges correspond to the
action of the generators of the group on group elements. That is, for each
generator gi, there is a labelled, directed arrow from an element x to y if
gix = y. It is clear that each vertex will have one ingoing and one outgoing
arrow for each generator, and that the graph will be connected.

As an example, consider the dihedral group of order 6, defined by:

〈a, b|a3, b2, 〉.

The Cayley graph of this group with respect to the generators a,b is shown
in figure 7.

Another notion we will find useful is that of a relative Cayley graph.
This can be constructed from a group G, a generating set for that group,
and some subgroup H of G. In a relative Cayley graph, vertices correspond
to cosets gH, and edges correspond to the natural action of the generators
on cosets. For each generator gi, there is a labelled, directed arrow from an
element xH to yH if gixH = yH. For example, again consider D6, with
subgroup H = {1, b}, and generators a,b. This relative Cayley graph is
shown in figure 8.

There is a simple way of constructing a surface from a Cayley graph(or
relative Cayley graph). It requires a ”building block”, which is a surface with
one marked boundary component for each generator and generator inverse
gi. Our surface consists of one copy of the building block for each vertex
of the Cayley graph, with two building blocks glued together along their
marked boundary components if there is an edge labelled gi going between
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Figure 7: An example of a Cayley graph

Figure 8: A relative Cayley graph
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(a) Without boundary

(b) With boundary

Figure 9: Building blocks for surfaces

the corresponding vertices of the Cayley graph. The component marked gi
at the source of the arrow is attached to the component marked g−1

i at the
target of the arrow.

Figure 9 depicts two possible choices of building blocks, with marked
boundary components identified. The cross-shaped building block will create
a surface with boundary, whereas the tube-shaped block will create a surface
with no boundary.

In figures 10 and 11 we depict this process of creating surfaces, using the
cross-shaped and tube-shaped building blocks respectively.

Consider the topology of these surfaces. The topology of an oriented
surface is determined entirely by the its genus and the number of holes.
What will the genus of our surfaces be? We can find it by computing the
Euler characteristic of the ”building blocks”. Consider the decomposition
shown in figure 12a. Each building block has 5 vertices, 8 edges, and 1
face. But note that each of the 4 vertices and edges on the boundary will be
counted twice, because they will be merged when the surface is constructed.
Therefore, in the completed surface there will be 3 vertices, 6 edges and 1
face per building block. A graph with n vertices will give rise to a surface
with Euler characteristic n(3− 6 + 1) = −2n. Since the genus g of a closed
surface is related to the Euler characteristic χ by χ = 2 − 2g, we have
g = −1

2(χ− 2) = −1
2(−2n− 2) = n+ 1.

For the cross shaped building blocks, there is an easy cell decomposition
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Figure 10: Constructing Surfaces from Cayley graphs – crosses
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Figure 11: Constructing surfaces from Cayley graphs – tubes
26



(a) Tube decomposition

(b) Cross decomposition
(c) Cross boundary com-

ponents

formed by placing a vertex at each exterior corner, seen in Figure 12b. Each
building block has 1 face, 8 vertices, and 8 edges. The 4 edges and 8 vertices
on the connecting boundary components are counted twice, so overall our
surface will have Euler characteristic χ = n(1− 6 + 4) = −n.

To classify the surface topologically, we must also find the number of
boundary components. To find this, we must consider the boundary compo-
nents of the building block and how they are glued together. As seen in figure
12c, the boundary components can be classified into 3 types, one of which
always follows the A arrows, one of which follows the B arrows, and one of
which follows the A and then B arrows. We can find the number of bound-
ary components by following the action of A, B, and AB on the vertices.
Vertices are split into equivalence classes by which ”A”-cycle, ”B”-cycle or
”AB”-cycle they are in. The number of boundary components is equal to
the sum of the size of each of these respective equivalence classes. Once we
know the number of boundary components C, we can then find the genus:
Because subtracting a disk from a surface lowers its Euler characteristic by
one, we have χ = 2− 2g − C, so g = −1

2(χ− 2 + C) = 1
2(n+ 2− C).

There is a natural action of G on Cayley-graph-derived surfaces. Namely,
each building block is translated by the action of G on the graph. This
preserves the connection of handles because they are attached by the action
of G.

We can use this action to automatically create a pair of isospectral sur-
faces for any finite group G and subgroups H1, H2 satisfying Sunada’s con-
dition. Here is how we do it. We create 3 graphs – the Cayley graph of
G, and the relative Cayley graphs with subgroups H1, H2. In each case we
use the right G-action on itself and on the cosets. We now create 3 surfaces
modelled on these Cayley graphs, SG, SH1 , and SH2 . From our construction
of SG, it follows that SH1 and SH2 are the quotients of SG with respect to
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H1 and H2. Therefore, if H1 and H2 satisfy Sunada’s condition, SH1 and
SH2 will be isospectral.

3.4 Isospectral Surfaces

Now we can put the pieces together and actually construct some isospectral
surfaces using Sunada’s method. The group we use will be the smallest
SL(n, q) group, SL(3, 2). This example was given in [4].

First, we must choose generators for SL(3, 2) to construct the Cayley
graph. Two elements that work are

A =

0 1 1
0 1 0
1 0 0

 B =

1 0 0
0 0 1
0 1 1


Lemma 3. A and B generate SL(3, 2).

Proof. All elements of SL(3, 2) can be written as products of elementary

matrices – matrices which swap two rows or add one row to another. So it

suffices to express all such elementary matrices in terms of A and B.

First, note that

AB =


0 1 0

0 0 1

1 0 0


which is a cyclic permutation of the rows. Now,

A−1B−1AB−1AABA−1B−1 =


1 0 0

0 0 1

0 1 0


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which swaps rows two and three. These two matrices are sufficient to arbi-

trarily permute the rows. Then we have

A−1B−1A−1B−1ABBAAB =


1 1 0

0 1 0

0 0 1


which adds row 2 to row 1. Combined with the ability to arbitrarily permute

the rows, this allows us to add any row to any other row. So we can generate

any elementary matrix with A and B, and therefore all of SL(3, 2).

To construct the reduced Cayley graphs on G/H1 and G/H2, we must
find how A, B, and their inverses act on the G/H1 and G/H2. The following
lemma lets us easily compute these actions.

Lemma 4. The left cosets of H1 and H2 are in one-to-one correspondence

with the points and lines of F3
2. The action of elements of G on the cosets

is the same as their action on these points and lines.

Proof. H1 and H2 are the stabilizers of a point and a line, respectively.

Consider a coset aH1. The vector e1 will be sent to a(e1) by any element

of this coset, because ah1e1, by the definition of H1. This shows that ae1 is

the same regardless of what representative a of H1 we choose. If two cosets

aH1 and bH1 have ae1 = be1, this implies a−1be1 = e1. So a−1b ∈ H1,

meaning they lie in the same coset. This shows that a coset aH1 is uniquely

determined by a(e1).
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Figure 13: A numbering of the points and lines of the Fano Plane

Figure 14: The action of our generators on the Fano Plane

Next we wish to show that the left action of G on these cosets is the

same as their action on the points of F3
2. But this is fairly clear, as a(bH1) =

(ab)H1, so the coset represented by ae1 is sent to b(ae1).

The above argument only used the fact that H1 was a stabilizer of points,

so the same proof implies that left cosets of H2 are in correspondence with

lines of F3
2, and that the action of G on these cosets is the same as the action

of G on the lines.

It’s easy to compute the action of A and B on the points and lines of
F3

2. Figure 14 shows their action on the Fano plane.
We can read off the action on the points and lines of F3

2 from these
diagrams. They are:
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Points

x 0 1 2 3 4 5 6

A(x) 4 1 0 2 3 6 5
B(x) 1 4 5 2 0 3 6

Lines

y 0 1 2 3 4 5 6

A(y) 1 0 4 3 5 6 2
B(y) 4 0 3 5 1 2 6

From these Cayley graphs we can deduce the structure of the corre-
sponding surfaces. Using the tubular building block, we obtain two genus
8 closed surfaces. For the cross-shaped building block, we can count the
number of A-orbits, B-orbits and AB-orbits. This can be done fairly easily
– there are 3 of each kind of orbit in each graph. Therefore, there are 9
boundary components. The Euler characteristic is −n = −7, so our genus
is 1

2(7 + 2− 9) = 0. Therefore, we have produced two 9-holed spheres.
These surfaces are isospectral – but we’d like them to be non-isometric.

Are they? In the case of the cross-shaped building block, it’s fairly easy to
see that they are. Note that the center of each cross is a ”special point”
on that cross, because it’s equidistant from the 4 inner corners. So central
points of crosses must be sent to central points by isometries. Similarly,
corners must be sent to corners. If we give a flat metric to the cross, we can
pretend that each building block is a region of the plane. By the rigidity
of planar congruences, the images of these 5 points determine the image
of the entire block. This means that building blocks are sent to building
blocks, so an isometry of the surfaces induces a graph isomorphism between
the relative Cayley graphs of G/H1 and G/H2. But it’s clear that no such
isomorphism exists: note that in both graphs, there are two vertices with
a single self-loop. However, in G/H1 the distance between these 2 vertices
is 4, and in G/H2 the distance if 2. So our surfaces are non-isometric but
isospectral!
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Figure 16: Quotient by Reflection

In the case of the tubular building blocks, an analogous argument based
on ”drawing the graph” on the surface will work. However, the full proof
is rather technical and involves a great deal of hyperbolic geometry. The
interested reader is referred to [3].

4 Transplantation via Sunada’s Method

The method of transplantation, explained in section 3, can be derived using
Sunada’s method. The two triangular domains used can be obtained as the
quotients of a 2-dimensional space under the action of a SL(3, 2), and can
be constructed from relative Cayley graphs just like the isospectral surfaces
from the last section. This section will sketch how this can be done, first
explaining the building blocks used and how they are pasted together, then
the generating set of SL(3, 2) used. It will exhibit the Cayley graphs ob-
tained from H1 and H2 and how these lead to the earlier-shown triangular
isospectral plane domains.

Our method of constructing isospectral surfaces with cayley graphs has
only produced closed surfaces, not the planar domains which were our orig-
inal goal. The method can be adapted by using reflections, instead of trans-
lations, as the action of our generators on the basic building blocks. The
quotient of a plane domain by a reflection is shown in figure 16.

Taking a quotient by a reflection produces a boundary where there was
none before. We can use this fact to obtain planar domains: by taking
quotients of reflections, we can convert a boundaryless surface into one with
boundary, which can then by embedded in R2.
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Figure 17: Our building block

We’ll construct our domain out of the simplest possible 2 dimensional
shape, the triangle. We’ll use as building block a scalene acute-angled tri-
angle. Since the triangle has 3 sides, we will need a group generated by 3
elements of order 2. In figure 17 we depict the identification of sides we will
use. Our building blocks are glued together along sides of matching lengths,
such that each block is the reflection of the triangles adjacent to it.

For our group G we can use SL(3, 2) again. Technically speaking, using
SL(3, 2) means that our covering manifold M will not be a manifold at
the corners where triangles meet, because the total angle there will exceed
2π. For instance, the element ab has order 4, implying that there will be
8 triangles around a single vertex. But this will not affect the application
of Sunada’s theorem, since there are only finitely many such points, all of
which will be sent to the boundary by covering maps.

For our generating set, we’ll use the following three elements:

a =

1 0 0
0 0 1
0 1 0

 b =

1 1 0
0 1 1
0 0 1

 c =

1 0 0
0 1 0
1 0 1


The effect of these generators on the Fano plane is depicted in figure 18.

For our subgroups satisfying the Sunada condition, we once again use H1

and H2

Reading off the action on the points and lines(using the same numbering
as in the last section), we obtain:

Points

x 0 1 2 3 4 5 6

a(x) 1 0 5 3 4 2 6
b(x) 2 1 0 4 3 5 6
c(x) 4 6 2 3 0 5 1
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Figure 18: The action of the generators a,b,c on the Fano plane

Lines

y 0 1 2 3 4 5 6

a(y) 4 1 3 2 0 5 6
b(y) 1 0 2 3 6 5 4
c(y) 2 5 0 3 4 1 6

From these actions we obtain the Cayley graphs depicted in figure 19.
From these Cayley graphs and the given triangle we obtain the isospectral
domains we exhibited in section 2.

On its own this does not show on its own that the two domains are
Dirichlet isospectral. In fact, it shows that they are Neumann isospectral,
because the eigenfunctions continue into themselves across the reflecting
boundary arcs. However, once we have obtained the domains, the proof by
transplantation easily shows them to be Dirichlet isospectral as well.

This example was originally obtained using a group of symmetries of a
tiling of the hyperbolic plane. A homomorphism was constructed from this
group to SL(3, 2), and the resulting hyperbolic triangles were deformed into
Euclidean ones. This is a fascinating topic, but is beyond the scope of this
thesis. The interested reader is referred to [6] and section 4 of the original
paper [5].

5 Conclusion

This thesis has presented examples of isospectral plane domains and shown
how to prove that they are isospectral but non-congruent using transplan-
tation. It has also considered a more general technique for constructing
isospectral manifolds, Sunada’s method, and shown how the simple transplantation-
based examples were arrived at using this method. It is hoped that this
thesis will be helpful to anyone who wishes to understand how isospectral
non-congruent domains can be constructed.
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(a) Relative Cayley graph of H1 (b) Relative Cayley graph of H2

Figure 19: Relative Cayley graphs with our new generators and resulting

domains
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